
application

Drawing Message Sequence Charts with LaTEX

Sjouke Mauw
Computing Science Department
Eindhoven University of Technology
P.O. Box 513
NL-5600 MB, Eindhoven
The Netherlands
sjouke@win.tue.nl

Victor Bos
Software Construction Laboratory
Turku Centre for Computer Science
Lemminkäisenkatu 14 A
FIN-20520, Turku
Finland
v.bos@abo.fi

abstract
The MSC macro package facilitates LaTEX users to easily include

Message Sequence Charts in their texts. This article describes
the motivation for developing the MSC macro package, the

features of the MSC macro package, and the design of the MSC

macro package.

Introduction

The Message Sequence Chart (msc) language is a visual
formalism to describe interaction between components of
a system. The language is standardized by the itu (Inter-
national Telecommunication Union) in Recommendation
Z.120 [IT01]. An introductory text on msc can be found
in [RGG96]. MSCs have a wide application domain, ran-
ging from requirements specification to testing and docu-
mentation.

An example of a Message Sequence Chart is given in
Figure 1. The msc shows an ftp login session to a ctan
archive. Three players, called instances, are involved
in the session: User, ftp client, and CTAN at location
ftp.tex.ac.uk. The instances are denoted by vertical lines.
Interaction between instances is denoted by labeled arrows.
For instance, the arrow ftp.tex.ac.uk is a message from
User to ftp client. Sending and receiving of a message are
special types of events; each message has a send event and
a receive event. Later we will see other types of events.
Events occur on instance lines. Events are ordered in time
and for each instance, time is supposed to run from top to
bottom. Furthermore, the send event of a message never

User ftp client ftp.tex.ac.uk

CTAN

ftp.tex.ac.uk

connect

getlogin

login

anonymous

anonymous

Ok

command
successful

msc ftp login to CTAN archive

Figure 1. An ftp login to the CTAN at ftp.tex.ac.uk

occurs after the receive event of the message. For example,
from Figure 1, we can derive that the ftp.tex.ac.uk message
occurs before the connect message, because the receive
event of the first message occurs before the send event of
the second message.

In order to include mscs in LaTEX documents, we have
developed the msc macro package. The current version
of the msc macro package supports almost the full msc
language as defined in the standard. In this article we
will describe the motivation of the msc macro package,
the features of the msc macro package, the design of the
msc macro package, and the limitations of the msc macro
package. This paper does not describe all features of the
msc macro package. For a thorough treatment of the msc
macro package we refer to the user manual [BM02b].

Motivation

Several commercial and non-commercial tools are avail-
able, which support drawing or generating Message Se-
quence Charts. However, these tools are in general not
freely available and often not flexible enough to satisfy

38 MAPS

Drawing Message Sequence Charts with LaTEX application

all users’ wishes with respect to the layout and graphical
appearance of an msc. Furthermore, they often do not
allow the user to include LaTEX code in the mscs. Another
drawback of these tools is that quite often they restructure
mscs automatically. Though for simple mscs this might be
what the user wants, for more complex mscs the result of
automatic restructuring is usually not desired.

Therefore, people often use general drawing tools, such
as xfig (see http://www.xfig.org/) to draw mscs. How-
ever flexible this approach is, it has some drawbacks. First
of all, general drawing tools have (and should have) a low
level of abstraction; their interface is defined in terms of
coordinates, points, lines, polygons, etc. To draw mscs, the
user would probably be more comfortable if the interface
was defined in terms of instances, messages, actions, etc.
For example, if you are drawing a message in an msc using
a general drawing tool, you would probably have to draw
a line with an arrow head from a position (x0, y0) to a
position (x1, y1), instead of drawing a message from an
instance i0 to an instance i1 of the msc.

Another drawback of using general drawing tools is
that they usually do not provide libraries of msc symbols.
Therefore, if you have to draw many mscs, it will take much
effort to get a set of consistent looking mscs. Furthermore,
if you want to change a parameter of the mscs, e.g., the
width of the instance head symbols, you would probably
have to edit all mscs manually.

For these reasons, we developed the msc macro package
for LaTEX. The macros in the package enable a textual
representation of an msc in a LaTEX source document. By
compiling the LaTEX document into PostScript, a graphical
representation of the msc is generated.

The design requirements for the msc macro package
were:

1. The package should follow the itu standard with
respect to shape and placement of the symbols of an
msc.

2. The interface of the package should be at the right level
of abstraction.

3. There should only be a limited amount of automatic
restructuring and layout of the mscs.

4. The appearance of (sets of) mscs should be
configurable by an appropriate set of parameters.

5. The msc macro package should run on standard LaTEX
distributions.

User interface

In this section we will briefly describe the user interface of
the msc macro package. We will do this by giving examples
and showing the LaTEX code that produced the examples.

MSC environment mscs are drawn in the msc environ-
ment. The syntax of this environment is

\begin{msc}[titlepos]{title}...\end{msc}

The title of the msc is defined by the title parameter. The
optional parameter titleposdetermines the position of the
title. By default it is l (left aligned). Other possible values
are c (centered) and r (right aligned).

Instances Instances are declared with the
\declinst[*]{nn}{an}{in}

command. The starred version produces a fat instance
which will not be discussed in this paper. The nn parameter
defines a nickname of the instance. Nicknames identify
instances and are used to draw messages and events. The
an parameter defines the above name of the instance. This
is the text to be placed above the instance head symbol
(the rectangle at the top of an instance). The in parameter
defines the inside name of the instance. This is the text to
be placed inside the instance head symbol. Both the inside
name and the above name may be empty.

Messages Messages are drawn with the
\mess[pos]{txt}{s}{r}[offset]

command. The optional pos parameter defines the position
of so-called self messages: messages from an instance to
itself. The default value of pos is l (to the left of the
instance) and another possible value is r (to the right of
the instance). The txt parameter defines the label of the
arrow representing the message. The s parameter is the
nickname of the instance on which the send event occurs,
i.e., the nickname of the sender. The r parameter is the
nickname of the instance on which the receive event occurs,
i.e., the nickname of the receiver. The optional parameter
offset defines the number of levels the receive event is
shifted vertically with respect to the send event. Levels are
discussed in the next paragraph. Offsets are useful if two
instances send messages to each other and then wait for
the messages to be received. For example, Figure 2 shows
messages a and b between instances i and j. The receive
event of message a occurs after the send event of message b
and vice versa. Both messages have offset = 2 in order to
place the receive events two levels below the send events.

Levels The height of an msc environment is determined
by the number of levels and a fixed amount of vertical
space above and below the first and last level, respectively.
Levels are created by the \nextlevel[num] command. The
optional parameter denotes the number of levels to be
added; its default value is 1. Levels are used to order events
in time. Recall that time runs from top to bottom, i.e., it
runs from higher levels to lower levels. Events in the same
level are drawn at equal vertical distance from the top of the
msc. The send event of a message will always be drawn in

Najaar 2003 39

application Sjouke Mauw and Victor Bos

i j

a

b

msc Messages

\begin{msc}{Messages}

\declinst{i}{i}{}

\declinst{j}{j}{}

\mess{a}{i}{j}[2]

\nextlevel

\mess{b}{j}{i}[2]

\nextlevel[2]

\end{msc}

Figure 2. Using non-zero message offsets

the current level. The receive event of a message can be
drawn in another level using the offset parameter of the
\mess command. Note that levels are not part of the msc
language, they are just an implementation means to draw
mscs.

Using the commands described so far, we can generate the
msc of Figure 1. The LaTEX input to generate that msc is
given below. The length \instdist, used in the last \mess
command, defines the distance between instances of an msc
and is one of the parameters to configure the msc macro
package. Here, it is used to create a \parbox that is 15%
smaller than the distance between the instances of the msc.

\begin{figure}[tb]

\begin{center}

\begin{msc}{ftp login to CTAN archive}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\mess{ftp.tex.ac.uk}{usr}{ftp}

\nextlevel

\mess{connect}{ftp}{ctan}

\nextlevel

\mess{getlogin}{ctan}{ftp}

\nextlevel

\mess{login}{ftp}{usr}

\nextlevel

\mess{anonymous}{usr}{ftp}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\mess{Ok}{ctan}{ftp}

\nextlevel[2]

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\end{msc}

\end{center}

\end{figure}

Actions Actions are events that can be used to model
internal activity of a particular instance. Actions are
defined with the \action{txt}{nn} command. The txt

parameter defines the text to be placed inside the action
symbol. The nn parameter is the nickname of the instance
that executes the action. The action will be drawn at the
current level with its top aligned with send events at the
same level.

For example, suppose CTAN has to do some compu-
tations in order to determine if the anonymous login is
allowed. The computation could be modeled by a check
action, as depicted in Figure 3. The LaTEX code for the
msc of Figure 3 is:

\begin{msc}{Action}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\action{Check}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\end{msc}

Regions Another way to model internal activity, or in-
activity, is by using regions. Regions are defined by
the \regionstart{regtype}{nn} and the \regionend{nn}

commands. The regtype parameter defines the type of
the region: activation, coregion (which will not be dis-
cussed in this paper), or suspension. The nn parameter is

40 MAPS

Drawing Message Sequence Charts with LaTEX application

ftp client ftp.tex.ac.uk

CTAN

anonymous

check

Ok

msc Action

Figure 3. An MSC with an action

the nickname of the instance on which the region should
be drawn. If an instance is active, e.g., doing some com-
putations, this can be modeled by an activation region. If
an instance is inactive, e.g., waiting for results, this can
be modeled by a suspension region. For example, the
computation of the CTAN could be modeled by an activ-
ation region. Furthermore, the ftp client is inactive during
this computation, which could be modeled by a suspension
region. Figure 4 shows the resulting msc. The LaTEX code
for the msc of Figure 4 is:

\begin{msc}{Regions}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\regionstart{activation}{ftp}

\mess{anonymous}{usr}{ftp}

\nextlevel

\regionstart{suspension}{ftp}

\regionstart{activation}{ctan}

\mess{anonymous}{ftp}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\regionend{ctan}

\regionstart{activation}{ftp}

\nextlevel

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\regionend{ftp}

\end{msc}

Note that the space between the activation region of the
ftp client and the anonymous message from the ftp client
to ctan is very small. In the next paragraph we will show

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions

Figure 4. An MSC with activation and suspension regions

how redefining one of the msc parameters can increase this
space.

MSC parameters The msc macro package has almost 30
parameters to change the layout of mscs. For example,
the width of instances, the distance between instances, the
distance between the head symbols and the msc frame, and
the width and height of action symbols can all be changed.
These parameters are represented by the LaTEX lengths
\instwidth, \instdist, \topheaddist, \actionwidth,
\actionheight, respectively. For instance, in the msc of
Figure 4, the distance between the instances should be
slightly bigger, in order to increase the space between the
activation region of the ftp client and the anonymous mes-
sage from the ftp client to ctan. Figure 5 shows the same
msc, but now the distance between instances is increased
by 10%. The LaTEX code for this msc is the code for Fig-
ure 4 in which just after the line \begin{msc}{regions} the
line \setlength{\instdist}{1.1\instdist} is included.

The location where an msc parameter is changed in
the LaTEX source document determines its effect. Since
the msc parameters are normal LaTEX macros or LaTEX
lengths, the normal LaTEX scoping rules for these entities
apply. For example, if a length parameter is changed
outside any LaTEX environment, its effect is visible for all
msc environments defined after the change. However, if
it is changed inside an msc environment, its effect is only
visible for that msc.

Since there are many parameters to configure the msc
macro package, there are three predefined parameter set-
tings to generate small, normal, or large mscs. The com-
mand \setmscvalues{parset} can be used to change the
selected parameter settings. The parset parameter should
be small, normal, or large. The default setting is normal.

Najaar 2003 41

application Sjouke Mauw and Victor Bos

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions 2

Figure 5. An MSC with larger distance between instances.

Implementation

In this section we will describe some aspects of the imple-
mentation of the msc macro package.

Drawing MSCs In general, and as shown by the examples
of the previous sections, an msc consists of a number of
vertically oriented instances that are connected by horizont-
ally oriented messages. So, the width of an msc is related
to the number of instances and the height of an msc is
related to the number of (ordered) messages. Based on this
observation, there are several implementations possible.

To define the width of an msc, we could use an additional
parameter of the msc environment. However, this strategy
has some drawbacks. First of all, an extra parameter,
the horizontal position, is required to declare instances.
Furthermore, this parameter probably changes whenever a
new instance is added to the left of an existing instance.
Finally, the user should calculate the value of this parameter
carefully in order to get evenly spaced instances.

Therefore, we chose to compute the width of an msc
based on the number of instances declared by the user
and the, user definable, \instdist length that defines the
distance between instances. This decision does not violate
requirement 3 of Section , no automatic structuring and
layout, since the number of instances is under control of
the user. Furthermore, the user can adjust the space to the
left of the first instance and the space to the right of the last
instance by redefining the length parameter \envinstdist.

The messages are partially ordered based on the relative
position of their send and receive events on instances.
We could have decided to provide commands to order
the events and then let the package compute the final
layout of the msc. However, apart from the fact that this

computation is not trivial, this strategy fails with respect to
requirement 3: no automatic structuring and layout.

Another strategy is to use an extra parameter of the msc

environment to define the vertical size of an msc. There
are several drawbacks to this approach. First of all, the
vertical size has to be computed. Secondly, commands to
draw messages, actions, regions, etc., should have one or
more additional parameter to indicate the vertical position
at which they should be drawn. Finally, if a new message is
to be added somewhere in the msc, the vertical placement
parameter of commands below the new message should
probably be updated.

Therefore, we chose to only provide a command,
\nextlevel, to advance the current height of the msc. By
increasing the current height between two messages, the
partial order can be defined. Furthermore, one can eas-
ily add new messages to the msc at any vertical position
without having to change parameters of existing messages.

These decisions resulted in an msc environment in which
the msc is drawn in a top-left bottom-right fashion.

Nicknames As explained above, the msc macro package
uses nicknames to identify instances. If an instance is
declared, the following attributes are associated to its nick-
name:

� The inside name,� The above name,� The width of the instance line,� A flag indicating if it is a normal or a fat instance,� The left, center, and right x-position of the instance,� The y-position from which this instance still has to be
drawn,� The style of the instance line, and� The style of the region of the instance.

The \declinst command defines the attributes using the
following TEX code pattern:
\expandafter\def

\csname inst〈attrnickname〉\endcsname
{〈value〉}

where 〈attrnickname〉 is the concatenation of the attribute,
e.g., abname (above name), and the nickname and where
〈value〉 is the value of the attribute. For instance, the
declaration

\declinst{usr}{User}{}

defines the following commands:
\instabnameusr, \instinnameusr,
\instbarwidthusr, \instisfatusr, \instxposusr,
\instlxposusr, \instrxposusr, \instyposusr,
\instlinestyleusr, and \instregionstyleusr.

For each instance attribute, there is an internal command
to read the value of the attribute. For example, to read

42 MAPS

Drawing Message Sequence Charts with LaTEX application

the value of the above name of instance usr, one should
use \msc@instabname{usr}. For some attributes, like
the current y-position, there is a command to change the
value of the attributes. For example, to change the y-
position of instance usr to the value y, one could use
\msc@setinstypos{usr}{y}.

Underlying drawing engine The msc macro package
uses the pstricks package, see [vZ93] or Chapter 4
of [GMS94], to draw lines, arrows, and frames. This
package is now commonly available in LaTEX distribu-
tions, so relying on this package does not violate require-
ment 5. A drawback of pstricks is that it is incompatible
with pdfLaTEX. Consequently, our msc macro package is
incompatible with pdfLaTEX, too. However, there are other
ways to generate pdf from LaTEX documents. One option
is to first convert the dvi file into PostScript, e.g., using
dvips, and then convert the PostScript file into pdf, e.g., us-
ing the ps2pdf utility included in ghostscript distributions
(http://www.cs.wisc.edu/˜ghost/).

Availability

The msc macro package is freely available at CTAN,
see directory macros/latex/contrib/supported/msc, and
at http://www.win.tue.nl/˜sjouke/mscpackage.html. It
is distributed under the LaTEX Project Public License,
see http://www.latex-project.org/lppl.txt.

Documentation of the package consists of a user
manual [BM02b] and a reference manual [BM02a]. These
documents are included in the distribution.

Conclusions

The msc macro package enables users to include mscs in
LaTEX documents. Furthermore, the mscs have a consist-
ent layout that can be configured by an appropriate set of
parameters. The package supports almost the complete itu
standard of the msc language, including msc documents
and high level mscs (which were not discussed in this
paper).

1. The abstraction level of the msc macro package is as
desired.

2. The user has full control over the relative position of
instances, messages, etc.

3. Changing mscs, e.g., adding extra instances or
messages, is easy and does not require computations
by the user.

4. The msc macro package is highly configurable. There
are about 30 user definable length parameters and a
small number of text parameters.

The developers of the msc macro package consider
the package more or less complete. Therefore, the only
changes to the package will be bug fixes and/or code
documentation.

References

[BM02a] Victor Bos and Sjouke Mauw. A LaTEX macro
package for Message Sequence Charts—Reference
Manual—Describing msc macro package version 1.13,
April 2002. Included in MSC macro package
distribution.

[BM02b] Victor Bos and Sjouke Mauw. A LaTEX
macro package for Message Sequence Charts—User
Manual—Describing msc macro package version 1.13,
April 2002. Included in MSC macro package
distribution.

[GMS94] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LaTEX Companion. Addison-
Wesley, 1994.

[IT01] ITU-TS. ITU-TS Recommendation Z.120:
Message Sequence Chart (MSC). ITU-TS, Geneva,
2001.

[RGG96] E. Rudolph, P. Graubmann, and J. Grabowski.
Tutorial on message sequence charts (msc’96). In
FORTE, 1996.

[vZ93] Timothy van Zandt. Pstricks, PostScript macros
for Generic TEX. User’s Guide, available at every
CTAN site, (CTAN:graphics/pstricks/), 1993.

Najaar 2003 43

