
A Quick Review of Some Important

TEX Primitives

Expandafter. \expandafter, a TEX primitive

often used in this article, a�ects the timing of

macro expansion. Macro expansion is that step in

TEX's processing which changes a control sequence

to whatever that control sequence is de�ned to

represent. \expandafter is usually followed by

calls to two macros. It expands the �rst macro

following it only after it has expanded the second.

Thus, \expandafter makes it possible for the �rst

macro to process the pieces of the second macro as if

the second macro were written out, not represented

by a control sequence.

Here is an example: If we de�ne \letters and

\lookatletters,

\def\letters{xyz}
\def\lookatletters#1#2#3{First arg=#1,
Second arg=#2, Third arg=#3 }

and follow \lookatletters with \letters ? !,

\lookatletters takes the whole de�nition of \let-

ters as the �rst argument, ? as the second argu-

ment, and ! as the third. Thus

\lookatletters\letters ? !

Bijlage P Insights into Macro Writing Techniques 55

Getting TEXnical:

Insights into TEX Macro Writing Techniques

Amy Hendrickson
TEXnology Inc., 57 Longwood Avenue, Brookline, MA 02146

617-738-8029 Internet: amyh@ai.mit.edu

Abstract

Most of us understand the basic form of TEX macros but

that understanding alone is often inadequate when we need to

solve certain problems. We need additional insight to be able

to develop methods of passing information, moving text with

changed catcodes, preserving blank lines, and more. Writing a

large macro package brings in a new set of issues: how to avoid

bumping into implementation restrictions, e.g., constraints of

hash size, string size, and others; how to make a pleasant user

interface; how to make your code as concise as possible.

Some of the techniques to be discussed here include making

a macro with a variable number of arguments; changing catcodes

in macros, de�ning a macro whose argument is intentionally

never used; conserving hash size by using counters instead of

newifs; csname techniques and non-outer dynamic allocation;

and table making techniques. Finally, some suggestions are

included on methods to use when developing new macros.

produces

First arg=xyz, Second arg=?, Third arg=!

But if we use \expandafter, \lookatletters will

be able to process the contents of \letters for each

argument:

\expandafter\lookatletters\letters ? !

produces

First arg=x, Second arg=y, Third arg=z ? !

String. \string is a TEX primitive which causes

the control sequence following it to be broken into a

list of character tokens in order to print the control

sequence or to process it with another macro.

\tt\string\TeX will produce \TeX. (What is the

\tt doing in there? It makes the backslash print

as backslash (\) when it would otherwise print as a

quote mark (\). If you are curious about this, look

up \escapechar in The TEXbook.)

Csname. \csname ...\endcsname is an alterna-

tive way to de�ne and invoke a TEX command.

Its function is the inverse of that of \string.

\string takes a control sequence and turns it into

tokens; \csname...\endcsname takes tokens and

turns them into a control sequence.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

Commands called for with \csname produce the

same results as the backslash form (e.g., \csname

TeX\endcsname and \TeX are equivalent) but the

\csname construction combined with \expandafter

allows you to build and invoke a control sequence

dynamically at the time the �le is processed, as

opposed to knowing its name at the time the

macros are written. This technique has many

interesting and useful applications, as we will soon

see.

If and ifx. Since both \if and \ifx are conditi-

onals used to compare tokens, the TEX user may

well wonder when to use \if and when to use \ifx.

When we understand how each of these conditionals

works, we may conclude that the answer is to use

\if only when comparing single tokens and to use

it with care.

How `if ' works. \if expands whatever im-

mediately follows it until it arrives at two unexpan-

dable tokens. It then compares them to see if their

charcodes match. This test is useful to see if a given

letter is upper- or lower-case and in some other

instances where we need to test a single token.

The two tokens that are compared are the �rst

that appear after \if, even if they are both found

inside the same macro following it. Understanding

that principle makes sense of these samples which

would otherwise be mystifying.

\def\aa{ab}
\def\bb{ab}
\if\aa\bb

tests false, because \if expands \aa and compares

`a' with `b'. Whereas

\def\aa{aa}
\def\bb{bb}
\if\aa\bb

tests true, because TEX compares `a' with `a' in the

macro \aa. \if doesn't process \bb since it has

already found two unexpandable tokens and in this

case will cause the letters `bb' to print since the

conditional is set to true and \bb is found in the

true part of the conditional.

There is another problem to consider. Since

\if expands a control sequence to its bottom level,

meaning every control sequence that is found in the

de�nition of a command being expanded will itself

also be expanded, it may generate an error message

if a control sequence is expanded that contains an @

in its name.

This problem arises because Plain TEX com-

monly includes @ as part of macro names, with the

catcode of @ set to that of a letter. The catcode of @

is set to `other' in normal text so that when a Plain

56 Insights into Macro Writing Techniques Bijlage P

TEX command of this sort is expanded in text the

@ is no longer understood as a letter, and TEX will

give the user an error message about an unde�ned

control sequence. For example,

\if\footnote X Yes\else No\fi

produces this error message:

! Undefined control sequence.
\footnote #1->\let \@sf

\empty \ifhmode...

How `ifx' works. \ifx, on the other hand,

will not have this problem since it only expands to

the �rst level of macro expansion. If \dog is de�ned

by \def\dog{\cat}, for instance, \ifx will expand

\dog as far as \cat but will not expand \cat to use

its de�nition.

This means that when we want to compare

control sequences, and to supply one control se-

quence as an argument to a macro, we can use the

\ifx conditional to look at the name of the macro

supplied without having to worry about macros

that may be contained in its de�nition.

For example, we can de�ne \def\aster{*}

so that we can use it to compare with another

macro. Inside the macro where we want to make

the comparison, we can write

\def\sample#1{\def\one{#1}\ifx\one\aster...

making both the argument to \sample and * be

de�ned as macros.

When \sample is used, \ifx causes only one

level of expansion. If the argument given to \sample

is \footnote, as in the \if example above, \one

will be de�ned as \def\one{\footnote}. \ifx

will expand \one to �nd `\footnote' but will not

expand it any further, and will not give an error

message.

Another reason to use \ifx to compare control

sequences is that \ifx will pick up both control

sequences following it and compare them. When we

try the same samples with \ifx that we did with

\if, we will �nd that we get results opposite to

those we got with \if|and we will get the results

we would want when comparing control sequences.

\def\aa{ab}
\def\bb{ab}
\ifx\aa\bb

tests true, because \aa and \bb match each other

in their �rst level of expansion, whereas

\def\aa{aa}
\def\bb{bb}
\ifx\aa\bb

tests false because the �rst level of expansion of \aa

and \bb do not match.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Picking Up Information

De�ning a macro that will pick up and pro-

cess a variable number of arguments. There

are many instances where you might want to allow

a variable number of arguments. Table macros are

one such case, in which the user might supply the

width of each column as an argument, and the

number of columns may well vary from table to

table. A table alignment macro that determines

whether each column in the table should be alig-

ned to the right, left, or center, is another case

where processing a variable number of arguments is

necessary.

There is a general method for constructing

a macro that will accomodate a variable number

of arguments. This method is to pick up all the

arguments as one unit and then take that unit apart

as a second step. For example, \table 1in 2.3in

4in* can be the command to start a table using

dimensions to specify the width of each column.

When \table is de�ned as \def\table#1*{....}

we can pick up all the dimensions as the �rst

argument, since the �rst argument ends with *,

then use a second macro to process each dimension

as its argument. The second macro will call itself

again after each dimension is processed until all the

dimensions have been used.

Here, in a sample macro, we de�ne \pickup

as \def\pickup#1*{...} to use it to pick up

everything between \pickup and the * as its �rst

argument. Then we use \expandafter to allow

\lookatarg to process the contents of the �rst

argument.

\def\pickup#1*{\expandafter\lookatarg#1*}

The de�nition of \lookatarg contains a looping

mechanism: It is a conditional that tests to see if its

argument is equal to `*'. It will keep calling itself

(recursing) until its argument is *. It calls itself by

rede�ning the command \go within the conditional,

and calling for \go outside the conditional. (\go

must be placed outside the conditional. If it were

to be used inside the conditional it would take

the \else or the \fi as its argument and massive

confusion would result.) When \lookatarg sees `*'

as the argument, it will de�ne \go as \relax and

thus will not call itself again.

First we de�ne \aster so that we have a

command to use with \ifx to compare with the

argument of \lookatarg:

\def\aster{*}

Now we can compare the argument of \lookatarg

with \aster. Thus, with

Bijlage P Insights into Macro Writing Techniques 57

\def\lookatarg#1{\def\one{#1}
\ifx\one\aster\let\go\relax
\else Do Something \let\go\lookatarg
\fi\go}

if we use the \pickup macro as follows

\pickup abc def*

the results would be:

Do Something Do Something Do Something Do

Something Do Something Do Something

\lookatarg has been invoked 6 times since it picked

up 6 tokens before it found the *. We can substitute

some other command for `Do Something' and build

a more useful macro.

Here are two applications of the technique

demonstrated in \lookatarg; a macro to underline

every word in a given section of text, and a macro

to process a given section of text to imitate the

small caps font.

First, we de�ne \underlinewords, which picks

up the whole body of text to be underlined:

\long\def\underlinewords #1*{%
\def\wstuff{#1 }\leavevmode
\expandafter\ulword\wstuff * }

Here \leavevmode asks TEX to go into horizontal

mode. Since each word will be placed in a box,

we need this command to prevent the boxes from

stacking vertically, as they would in vertical mode.

Now we de�ne \ulword which will unpack the

text picked up, word by word, put each word in a

box, and provide a horizontal rule under each:

\long\def\ulword#1 {\def\one{#1}%
\ifx\one\aster\let\go\relax
\else\vtop{\hbox{\strut#1}\hrule \relax}
\let\go\ulword

\fi\go}

The space given after the argument number in the

parameter �eld will allow us to pick up one word at

a time, since the collection of the argument will be

completed only when \ulword sees a space. Here

we use \underlinewords:

\underlinewords
non-outer dynamic allocation*

which results in:

non-outer dynamic allocation

The macro \fakesc is another construction

using this technique. It lets you set text in large

and small caps, imitating the `small caps' font. Its

arguments are, in order, the font for the larger

letters, the font for the smaller letters, and the text

that is to be set in small caps.

When we use \fakesc we need to declare the

two fonts to be used:

\font\big=cmr10
\font\med=cmr8

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

and then

\fakesc\big\med Here are Some Words to be
Small Capped. NASA, Numbers, 1990*

will result in:

HERE ARE SOME WORDS TO BE SMALL
CAPPED. NASA, NUMBERS, 1990

The macro starts by de�ning the two fonts and

the text to be processed; there is a space after #3 in

\def\stuff{#3 } because \pickupnewword needs

a space to complete its argument when the last

word is found as \stuff is expanded:

\def\fakesc#1#2#3*{\def\bigscfont{#1}%
\def\smscfont{#2}\def\stuff{#3 }%
\expandafter\pickupnewword\stuff *}

\pickupnewword picks up one word at a time, in

order to preserve the space between words. If we

just asked \pickupnewlett to process the entire

third argument of \fakesc, the space between

words would be thrown away as irrelevant space

appearing before the next character being looked

for as the argument of \pickupnewlett. Here,

then, is the de�nition of \pickupnewword:

\long\def\pickupnewword#1 {%
\expandafter\pickupnewlett#1\relax}

Once \pickupnewword has picked up the word,

\pickupnewlett is used to test each letter to de-

termine whether it should be capitalized. If so,

it uses the larger size font; otherwise, the smal-

ler. \pickupnewlett tests to see if the argument

is uppercase by using the �rst argument to de-

�ne \letter, \def\letter{#1}, and then de�nes

\ucletter in an uppercase environment.

\uppercase{\def\ucletter{#1}....}

Now it uses the \if conditional to compare \letter

and \ucletter If they match \pickupnewlett

makes the current letter or number be printed in

the larger font; otherwise the smaller font is used.

Note that we can use the \if conditional here since

we are only comparing single letters. So, �nally, the

de�nition of \pickupnewlett:

\def\pickupnewlett#1{\def\letter{#1}%
\if\letter*\unskip\let\go\relax
\else%
\if\letter\relax{\bigscfont\ }%

\let\go\pickupnewword
\else\uppercase{\def\ucletter{#1}%
\if\letter\ucletter%
{\bigscfont#1}\else{\smscfont#1}

\fi}%
\let\go\pickupnewlett

\fi\fi\go}

When to pick up text as an argument, and

when to to pick up text in a box. The correct

timing of catcode changes is an issue of concern to

58 Insights into Macro Writing Techniques Bijlage P

the macro writer. Picking up text as an argument

will usually be the right way to provide information

for the macro, but will fail if you need to change

catcodes, since catcodes are irrevocably assigned at

the time TEX reads each character. Thus, by the

time TEX has picked up an argument, the catcode

of all the tokens in the argument are set, and

no amount of �ddling with the argument within a

macro will change this.

Even a catcode change asked for in the body

of an argument will not e�ect a catcode change

because the catcodes of the tokens will already be

set by the time TEX expands the request for the

catcode change.

There are two ways to solve this problem. In

simple cases, one can build a macro containing the

desired catcode changes and then invoke a second

macro within the �rst, i.e.,

\def\changecat{\bgroup
\obeylines\pickupchanged}

\def\pickupchanged#1\endchange{%
\setbox0=\vtop{\hsize=1in#1}%
\centerline{xx\vtop{\unvbox0}yy}%
\egroup}

In \changecat a catcode change is produced

by \obeylines which changes the catcode of the

end-of-line character, ^^M, to 13 (`active') so that it

can be de�ned as \par. Once that catcode change

is made, \pickupchanged is invoked. Its argument

has the end-of-line character set to category 13

at the time the argument is picked up. Notice

the \bgroup command in \changecat is matched

with the \egroup command in \pickupchanged to

con�ne the catcode change.

Used:

\changecat
What
Happens
Here?
\endchange

xx What

Happens

Here?

yy

But, though this example will work for a

catcode change set within the \changecat macro it

will not allow \changecat ...\endchange to pick

up an argument that contains a catcode change,

for instance, an argument containing macros to

produce verbatim text, as we could do with the

following technique.

The two-part macro de�ned below will build a

box, starting it in \pickupcat with \setbox0\vtop

\bgroup. Any material found between it and \end-

pickup will be expanded, and �nally the box will be

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

completed with the \egroup found in \endpickup,

a construction that allows a catcode change between

the �rst and second part of the macro.

\def\pickupcat{\global\setbox0
\vtop\bgroup\hsize=1in\obeylines}

\def\endpickup{\egroup%
\centerline{XXX\vtop{\unvbox0}YYY}}

\pickupcat...\endpickup is shown using a pre-

viously de�ned verbatim environment, \begin-

verb...\endverb, to pick up and move verbatim

text in a box. Once we see this principle, we

can see that a revision of this macro would allow

us to place verbatim text in a �gure environment,

or in a table, or in another environment where it

would normally be di�cult to introduce material

with changed catcodes. For one example:

\pickupcat
\beginverb

Test of
%$_^#@\

Verbatim

text.
\endverb
\endpickup

produces:

XXX Test of

%$_^#@\

Verbatim

text.

YYY

Looking ahead at end of line to preserve

blank lines. Since TEX normally ignores blank

lines between paragraphs and in some cases we

might want to maintain blank lines, we need to

develop a way to test for blank lines and provide

vertical space when one is present. In this case, we

are not interested in picking up text but in picking

up information. What comes after each end-of-line

character?

As previously mentioned, \obeylines changes

the end-of-line character, ^^M to \par. You can

de�ne ^^M to do other things as well. For instance,

you can de�ne it to be a macro that will supply

a baselineskip when the next line is blank or a

lineskip when the next line is not.

In this example, ^^M will be de�ned as \lin-

eending, a macro that includes \futurelet to look

ahead in the text. If the character that it sees is

itself (\lineending), the next line is blank, since

there is nothing from one end-of-line character to

the next one. The macro \looker will then supply

a baselineskip. If it does not see itself, indicating

that the next line is not blank, \looker will supply

a lineskip:

Bijlage P Insights into Macro Writing Techniques 59

\def\looker{%
\ifx\next\lineending%
\vskip\baselineskip\obeyspaces\noindent%

\else%
\ifx\next\endgroup\else%
\vskip\lineskip\obeyspaces\noindent%

\fi\fi}

\def\lineending{\futurelet\next\looker}

{\obeylines
\gdef\saveblanklines{\bgroup\obeylines%
\let^^M=\lineending}}

\def\endsavelines{\egroup}

Example:

\saveblanklines
Here is

a blank line,
and a non-blank line.
\endsavelines

which produces

Here is

a blank line,

and a non-blank line.

Passing Information: When Counters

Can be More Advantageous than

Newif's

Hash size, the size of that part of TEX's memory in

which it stores control sequence names, is usually

not something about which the macro writer has to

be concerned. When building a large macro package,

however, hash size can be exceeded, making the

number of control sequences de�ned an important

issue. One way to economize on the number of

de�nitions in a package is to use counters to pass

information rather than using \newif s.

When the number of control sequences is not

important, \newif can be used to create a conditi-

onal. This conditional can then be set to true or

false in one macro, and tested to see if it is true

or false in another as a way of passing information

from one macro to another.

However, every time a \newif declaration is

used, three new de�nitions are generated. If saving

hash size is an issue, we can use \newcount instead,

and only one new de�nition is generated.

We can use \newcount to allocate a counter

and assign it a name, e.g., \newcount\testcounter.

Then, instead of setting a conditional to true or

false, i.e., \global\titletrue, and testing for it,

i.e., \iftitle ...\else ...\fi we can test for

the value of the counter. For example,

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

\global\testcounter=1

could be the equivalent of \global\titletrue. We

can then use this test:

\ifnum\testcounter=1 ...\else ...\fi

Counters have the additional advantage of

allowing you to test for a range of numbers, i.e.,

\ifnum\testcounter>1 ...\else ...\fi

so you can write more compact code when testing

for a number of options.

For instance, if we were to write a macro that

allowed the user to choose to �ll a box by pushing

the text to the left, center, or right, we could

assign a numerical value to each of the options. If

we assigned a value to \testnum according to the

plan, left=0, center=1, right=2, we could test

for a range of numbers when another macro was

determining which way to �ll the box. The test

could look like this:

\hbox to\hsize{\ifnum\testnum<1
%% if text is to be pushed to the left

\else
%% if text is to be either centered or
%% pushed to the right, do \hfill

\hfill\fi

htexti
\ifnum\testnum>1

%% if text is to be pushed to the
%% right, don't do \hfill

\else
%% or text is either centered
%% or pushed to the left

\hfill\fi}

This same principle can be used in more complicated

cases as a way of reducing great masses of nested

conditionals to a test of the range of the value of a

particular counter.

Methods of Conserving Hash Space

As mentioned earlier, using counters to pass infor-

mation rather than \newif\thinspace s is one way

to help prevent the hash size from being exceeded.

Here are some others.

Input separate macro �les on demand. To

reduce the number of macros in a macro �le, break

up the complete macro package into a general macro

�le and a number of secondary macro �les. Within

the general macro �le de�nitions can be made that

read in the secondary �les only when the user calls

for a macro for a particular function. For instance, a

�le containing all the table macros will only be read

in if the user uses the general table macro. This

principle can be used for listing macros, indexing

macros, and any other sort of macro that will not

necessarily be used for every document.

60 Insights into Macro Writing Techniques Bijlage P

Using non-outer dynamic allocation. Dynamic

allocation is the way macro writers are able to

access the next available number of a dimension,

box, or counter at TEX processing time and assign

a symbolic name to it. \newdimen, \newbox and

\newcount are the commands that allocate these

numbers dynamically. It is safer to use dynamic

allocation in a macro than to use a particular

numbered box, counter, or dimension, since it

prevents accidental reallocation.

Unfortunately, all of the commands in this

useful set are \outer, which means that they

cannot be declared within a macro. By making

these dynamic allocation macros non-outer, we can

then include them inside macros and only declare

new counters or new boxes or new dimensions when

they are needed.

Here is how to make these commands non-

outer. Simply copy the original de�nition, supply

a new control sequence name and de�ne them

without the \outer that originally preceded the

de�nition. For example, the de�nition of \newbox

was originally

\outer\def\newbox{%
\alloc@4\box\chardef\insc@unt}

Here are the new versions, \nonouternewbox, etc.:

{\catcode`\@=11
\gdef\nonouternewbox{%
\alloc@4\box\chardef\insc@unt}

\gdef\nonouternewdimen{%
\alloc@1\dimen\dimendef\insc@unt}

\gdef\nonouternewcount{%
\alloc@0\count \countdef \insc@unt}

\catcode`\@=12}

In the next section we will see these non-outer

commands being used in a table macro, only making

named boxes or dimension when needed. Macro

writers may �nd other uses for this technique as

well.

Fun with Csname

One of the really useful features of \csname is that

control sequences can be expanded within the body

of the \csname...\endcsname construction:

\expandafter
\def\csname\testmacro\endcsname{%

hde�nitioni...}

Counters can be used:

\expandafter
\def\csname\testcounter\endcsname{%

hde�nitioni...}

Counters with roman numerals can be used:

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

\expandafter
\def\csname\romannumeral\testcounter%
\endcsname{hde�nitioni...}

You can even make a de�nition out of numbers or

other symbols that ordinarly are not allowed for a

control sequence name:

\expandafter\def\csname 123&#\endcsname{%
hde�nitioni...}

The only thing to remember here, is that any control

sequence made with \csname that contains anything

other than letters must be invoked as well as de�ned

with \csname: \csname 123&#\endcsname is the

way to use this macro.

Using \csname with \expandafter makes it

possible to do all sorts of things that would not

otherwise be possible. Some examples will be found

in the following text.

Macros that de�ne new macros using data

supplied. One example involves having one macro

de�ne another macro where the name of the second

macro depends on data supplied in the text.

In the example constructed below, \usearg

takes the �rst two words as arguments #1 and

#2, reverses their order and uses them to make a

control sequence name. This control sequence is

then de�ned to be the complete name and address

of the person whose name was used to form the

control sequence name.

The order of the name is reversed so that the

names of the new macros can be sent to an auxiliary

�le and be sorted alphabetically. The Appendix

illustrates how a more elaborate form of this set of

macros may be used to manipulate mailing lists.

\obeylines below changes the catcode of the

end-of-line character (^^M) to 13 so it can be used as

a argument delimiter in the de�nition of \usearg;

\obeylines also de�nes ^^M as \par so that every

line ending seen on the screen is maintained when

the text is printed:

{\obeylines
\def\usearg#1 #2^^M#3^^M^^M{%
\expandafter\gdef\csname #2#1\endcsname
{#1 #2\par #3}}

With this de�nition,

\usearg George Smith
21 Maple Street
Ogden, Utah 68709

\SmithGeorge
}

produces

George Smith

21 Maple Street

Ogden, Utah 68709

Bijlage P Insights into Macro Writing Techniques 61

The Appendix contains a macro subsystem for

processing and sorting address labels; it demonstra-

tes this technique and many of the others discussed

in this paper.

Macros that de�ne new macros using a coun-

ter. Here is another use of \csname: In this case,

it is used to de�ne a macro that will itself de�ne

a new macro every time it is used, with the name

of the new macro determined by a counter whose

number is represented with roman numerals. This

can be used to construct a series of macros that

expand into areas of text to be reprocessed at the

end of a document. For instance, this technique

could be used to produce a set of slides from given

portions of the text of a document.

In the following example, each time \testthis

is called it will de�ne a new control sequence. It

makes the name of the new control sequence by

advancing \testcounter which is operated on by

\romannumeral to produce a new set of letters.

These letters will appear in the name of the new

macro.

Each control sequence is then sent to an auxi-

liary �le, embedded in code to make the slide.

(The slide formatting code is represented here as

[[[]]]). At the end of the document the auxiliary

�le containing all the de�nitions can be input, to

produce a set of slides.

\newcount\testcounter
\testcounter=501

%% just to start with a large
%% number to make into roman numerals

\newwrite\sendtoaux
\immediate\openout\sendtoaux
\jobname.aux %% opening a file to write to

\def\testthis#1{%
\global\advance\testcounter by1
\expandafter\gdef\csname%
\romannumeral\testcounter XYZ\endcsname{%

[[[#1]]]}
\immediate\write\sendtoaux{%
\noexpand\csname\romannumeral\testcounter
XYZ\noexpand\endcsname}}

Here is an example of \testthis being used:

\testthis{This is the first bit of text...}
\testthis{This is the second...}

The code above writes the following lines into the

.aux �le:

\csname diiXYZ\endcsname
\csname diiiXYZ\endcsname

and when the .aux �le is input, these commands

produce

[[[This is the �rst bit of text...]]] [[[This is the

second...]]]

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

Designing generic code with csname. Another

really important use for \csname constructions is a

way of making compact code for a section of a macro

that repeats many times with a small variation each

time. Table macros are often examples of this kind,

since they tend to have repeating sections, one for

each column.

We consider below some parts of a set of

macros for table construction showing several ways

that \csname can be used. The form adopted for

the \halign command line, using a & immediately

after the \halign{, will allow the speci�cations for

this column to be used for each column in the table.

Using \csname with a counter allows this set

of commands to be de�ned only once. Each new

column entry will cause the \colcount counter

to advance making the otherwise similar column

de�nition use a new counter value inside the \cs-

name...\endcsname constructions.

Non-outer dynamic allocation is used to name

only those counters, dimensions, or boxes that are

needed when the table is made up. A new set is

declared for each column of the table. Since we don't

need to guess ahead of time how many columns are

going to be used, only those dimensions or boxes

that are needed will be declared. In addition,

\ifdefined (below) tests to see if the particular set

of dimensions and boxes has been used in a previous

table, and will only declare a new set if they have

not been de�ned previously.

\xtab and \dtab involve counters only, so they

can be used later in a \csname...\endcsname con-

struction where it doesn't matter if the expansion

will produce numbers as part of the control se-

quence. \gtab and \vtab, on the other hand, need

to be used as ordinary control sequences which is

the reason for the \romannumeral command that

will produce letters instead of numbers when the

\gtab and \vtab are expanded.

\asizetab and \finishasizetabwill use these

boxes and counters to actually set the table entries.

Here, �nally, are some de�nitions for table

construction:

\def\multipagetable{\global\firstcoltrue
\halign\bgroup%
&\global\advance\colcount by1\relax%
\ifdefined{\the\colcount tab}{}{%

\edef\xtab{\expandafter\csname
\the\colcount tab\endcsname}%

\edef\dtab{\expandafter\csname
\the\colcount tabwide\endcsname}%

\edef\gtab{\expandafter\csname
\romannumeral\colcount
gapped\endcsname}%

\edef\vtab{\expandafter\csname
\romannumeral\colcount

62 Insights into Macro Writing Techniques Bijlage P

vlinewd\endcsname}%
\expandafter\nonouternewdimen\vtab%
\expandafter\nonouternewbox\xtab%
\expandafter\nonouternewdimen\dtab%
\expandafter\nonouternewcount\gtab%

}%
\ifdefined{align\the\colcount tab}{}{%
\edef\atab{\expandafter\csname

align\the\colcount tab\endcsname}%
\expandafter\nonouternewcount\atab}%

\asizetab##\finishasizetab\cr}

A \csname..\endcsname construction de�ned

using one counter can be invoked using a di�erent

counter, if that proves useful. Another part of the

code for multipage tables uses a second counter

to invoke macros de�ning boxes containing the

column heads, used when the table continues over

page breaks. Even though the original de�nition

used \colcount as the counter to name the boxes,

\contcolcount, another counter, can be used in

another macro to invoke the same de�nition. When

TEX expands \csname...\endcsname construction

it produces a number as the replacement for the

counter, so the name of the counter used doesn't

a�ect the result. This might be helpful in cases

where you don't want to change the value of one

counter, but still wish to use a \csname construction

that contains it.

Tips on Table Macros

\everycr is a TEX primitive for a token list. It

functions similarly to \everypar or \everymath in

that its de�nition will be used every time the named

environment is present, in this case after every \cr.

By setting \everycr equal to some de�nition we

can insert a set of commands after every line in a

table, since every line will end with a \cr. A simple

example is this:

\everycr={\noalign{\hrule}}

which will insert a horizontal rule automatically

after every \cr in the table. Once this possibility

is discovered, the macro writer may realize that

there are many other things that can be done with

\everycr, such as including a set of conditionals

that will call for horizontal lines with breaks in

them, double horizontal lines, thicker horizontal

lines, thicker lines under some columns but not

under others, and so on.

You can include a counter which is advanced

every time \everycr is called, and use that counter

to determine how many lines have been used in

the table, in order to stop and restart the table,

making it possible to have a table that will continue

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

for hundreds of pages without TEX running out of

memory.

Moreover, you can call for a small vertical skip

in the \everycr de�nition which will allow the

table to break over pages. If you use the following

construction, your table will break over pages and

a horizontal line will appear both at the bottom of

the previous page and at the top of the new page,

without the user having to know ahead of time

where the table will break.

\everycr={\noalign{\hrule\vskip-1sp\hrule}}

When Doing Nothing is Helpful

The usual form of a macro with an argument is (in

its most basic form) \def\example#1{#1}. There

are cases in which not using the argument can

be helpful when you want to get rid of something:

\def\example#1{}.

You can use this principle to prevent large

sections of text from being processed by TEX.

\long\def\ignorethis#1\endignore{}

Thus

\ignorethis
Here is some text that will be ignored...
\endignore
This is where \TeX\ starts printing text...

will produce

This is where TEX starts printing text...

You might want to use this macro in the process

of debugging a document you are working on. All

text between \ignorethis and \endignore will

be ignored, making it possible for TEX to print

only the part of the document in which you are

interested. TEX will run out of memory after about

6 pages of text is picked up by the \ignorethis

macro, depending on the implementation of TEX

being used, but if you want to ignore more than

6 pages of text you can end the �rst \ignorethis

with \endignore and enter a second \ignorethis

...\endignore.

A slight improvement, however, is needed to

prevent TEX from complaining if an \outer com-

mand is found in the argument of \ignorethis.

This is the error message which we would like to

avoid:

! Forbidden control sequence found
while scanning use of \ignorethis.

We can avoid it by changing the catcode of the

backslash to be that of a letter. Now there

will be no commands processed until \ignorethis

encounters \endignore and the catcode changes are

turned o�.

Bijlage P Insights into Macro Writing Techniques 63

\long\gdef\ignorethis{\bgroup
\catcode`\\=12 \catcode`\^=12 \finish}

{\catcode`\|=0 |catcode`|\=12
|long|gdef|finish#1\endignore{|egroup}%
}

Note that here, too, #1 is never used in the

replacement part of the macro.

Getting rid of backslashes. Here is another

example of an argument that is thrown away:

\def\stripbackslash#1#2*{\def\one{#2}}

which only uses the second argument, throwing

away the �rst argument, in this case stripping away

a backslash from a control sequence supplied by the

user. \stripbackslash can then be used in another

macro which needs a control sequence without its

backslash to work correctly, for instance:

\def\newdef#1{\expandafter
\stripbackslash\string#1* \one}

When this is used,

\newdef\testmacro

produces

testmacro

Instead of simply printing the control sequence

without the backslash, \newdef can be rewrit-

ten to test to see if a given macro has already

been de�ned. In this example, \newdef tests to

see if the expansion of the control sequence \cs-

name\one\endcsname, (where \one, was de�ned by

\stripbackslash to be the control sequence sup-

plied by the user minus its backslash) is equal to

\relax. This takes advantage of the TEX conven-

tion that a previously unde�ned control sequence

invoked in a \csname...\endcsname environment

will be understood to be equal to \relax, whereas

an already de�ned control sequence will not:

\def\newdef#1{%
\expandafter\stripbackslash\string#1*

%% \stripbackslash defines \one
\expandafter
\ifx\csname\one\endcsname\relax
%% \one is expanded to be the
%% control sequence the user supplied
%% minus the backslash.
%% If csname construction equals
%% \relax, do nothing

\else %% Else, give error message:
{\tt Sorry, \string#1 has already been
defined. Please supply a new name.}

\fi}

In the test below, notice that we do not get an error

message for \cactus which hasn't been previously

de�ned, but we do get a message for TEX, which is

de�ned:

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

\newdef\TeX
\newdef\cactus

produces

Sorry, \TeX has already been defined.

Please supply a new name.

Not using boxes. Similar to not using arguments,

there are times when setting a box and then not

using it can be useful.

When writing a macro to make text to wrap

around a given �gure, we might want to use a

test box to put a given amount of text in, say,

a paragraph, which has been picked up as an

argument to a macro. We can then measure the

box to see if it will exceed the depth of the �gure.

If it does not, the box can be used as it is, but if it

does, the box can be ignored and the argument re-

used, with changed \hangindent and \hangafter,

to allow the text to �t around the �gure neatly.

This works because text picked up as an argument

to a macro does not yet have its glue set, so it can

accomodate di�erent line widths.

Another use for a box that is never printed

is to use it as a container in which to expand a

macro having symbols in the parameter �eld. For

example, if the macro \splittocentry is de�ned

by

\def\splittocentry#1-#2-#3{\gdef\one{#1}
\gdef\two{#2}\gdef\three{#3}}

we can use it in a another macro to process

an argument which may or may not include the

hyphens, i.e.,

\setbox0=\hbox{\expandafter
\splittocentry#2-{}-{}}

The hyphens that are necessary to complete the use

of \splittocentry are supplied in the box but they

will not print if the replacement for #2 turns out to

supply the hyphens already. Since \one, \two, and

\three are globally de�ned (\gdef), their de�nition

will be understood outside the box.

Some General Macro Writing Tips

There are several commands that can make the

process of macro writing easier.

\show is a TEX primitive that will cause the

de�nition of the macro it precedes to appear on your

screen when you run TEX on a �le that contains

it. \show\samplemacro will cause the de�nition

of \samplemacro to be appear on your screen, for

example. \show can be temporarily included inside

a macro to let you see what is being picked up as

arguments. For instance, if

64 Insights into Macro Writing Techniques Bijlage P

\def\test#1,#2{\def\one{#1}\def\two{#2}
\show\one\show\two....}

then

\test some, stuff

will help you see what is being picked up as

argument #1 and #2. In this example the results are

obvious, but there are more complicated situations.

For example, when one macro is looking at the

contents of another macro, a test like this can

quickly help you understand what TEX sees when it

picks up an argument, a helpful debugging tool. It

also has the advantage of giving you information at

the time you TEX your �le, saving you the steps of

either previewing or printing the .dvi �le.

\show will also send the de�nition of the macro

that it precedes to the .log �le, a feature which

you can take advantage of when you are interested

in rede�ning a Plain TEX macro. If you write

\show\raggedright, for example, in a test �le and

run TEX on that �le, the de�nition of \raggedright

will appear in the .log �le. You can then move

those lines of code from your .log �le to your macro

�le and you will have saved yourself the trouble of

looking up the command in The TEXbook and

copying it into your �le. Now you are ready to

make changes to the original macro.

A related command, \showthe, will give you

the current value of a token list, like \everypar.

Including \showthe\everypar in a test �le can

tell you what TEX sees as the current value of

\everypar at that point in the �le. You can also

use \showthe to get the current value of a counter

or dimension. You may want to include a \showthe

temporarily in a macro you are developing, similarly

to \show, as a debugging tool.

Finally, using \message in a conditional while

working on a macro can give you helpful informa-

tion. You could put this code in a headline, for

instance, to be able to see the state of a particular

conditional in the headline,

\headline={....%
\iftitle
\message{SEES TITLE, WIN}

\else
\message{NO TITLE, LOSE}

\fi...}

or include a similar construction in the body of a

macro while you are testing it. When you TEX the

�le you can quickly see if you are getting the results

you were expecting.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Appendix

Code to Alphabetize an Address List

These macros demonstrate many of the techniques

discussed in this paper. The macros process an

existing an address list by taking the �rst line of

each address, re-ordering the name with last name

�rst, then turning the name into a control sequence

which is sent to an auxiliary �le. The user must

alphabetically sort the auxiliary �le. The resulting

sorted �le is then input back into the originating

�le and the whole address list will be transposed

and printed in alphabetical order.

The user enters \alphalist at the beginning of

an address list, and a blank line and \endalphalist

at the end. \alphalist picks up the name, then

makes a macro using the name (last name �rst)

as the control sequence. This control sequence

is sent to auxiliary �le with the same name as

the originating �le and with an .alf extension.

The �le filename.alf must be sorted to produce

filename.srt, using a sort routine on the user's

system. If DOS, write

sort < filename.alf > filename.srt

\endalphalist checks to see if filename.srt

exists, and if so, will \input filename.srt. The

sorted list of control sequences will produce an

alphabetized address list.

First we name dimensions and counters and set

them to arbitrary sizes.

\newdimen\heightofentry \heightofentry=.75in
\newdimen\widthofentry \widthofentry=.3\hsize
\newcount\namenum

\alphalist makes every new paragraph start

with the command \look. \obeylines will main-

tain the same line endings as seen on the screen.

\def\alphalist{\bgroup\obeylines
\global\everypar={\look}}

First we discuss the de�nition of \look, then

we will consider the macros used in its de�nition.

\look picks up the entire name. It then

de�nes it as \test. \test is placed in \box0

and expanded after \throwawayjr which de�nes

\fullname. Then \fullname is expanded after

\takeapart to de�ne \nameinrev. \nameinrev is

the name in reverse order; it is used as the name of

a control sequence that de�nes the entire name and

address. \nameinrev in a csname environment is

also sent to an auxiliary �le so that it can be sorted

alphabetically. Here is the de�nition of \look:

{\obeylines
\gdef\look#1^^M#2^^M^^M{\def\test{#1}
\setbox0=\hbox{%

Bijlage P Insights into Macro Writing Techniques 65

\expandafter\throwawayjr\test, {}}
\global\namenum=0
\expandafter\takeapart\fullname
\obeylines
\everypar={}
\expandafter%
\gdef\csname\nameinrev\endcsname{%
\vtop to\heightofentry{\parindent=0pt
\vfill\hsize=\widthofentry
#1
#2
\vfill}}%

\immediate\write\alphafile%
{\noexpand\csname\nameinrev%
\noexpand\endcsname}%

\global\everypar={\look}}
}

Now we consider the commands used in the

de�nition of \look.

To make the last name appear �rst in the com-

mand sent to the auxiliary �le, we count the number

of parts to the name (\Mr. R. G. Greenberg" has

four parts, for example) and use \ifcase to select

the correct order. After \nameinrev (for `name in

reverse order') is de�ned, it will then be used in the

\look macro to create a control sequence by being

expanded within a csname.

\def\makerightdef{\ifcase\namenum\or
\or\gdef\nameinrev{\one}
\or\gdef\nameinrev{\two\one}
\or\gdef\nameinrev{\three\one\two}
\or\gdef\nameinrev{\four\one\two\three}
\or\gdef\nameinrev{\five\one\two\three%
\four}

\fi}

\makedef gives a control sequence name to the

argument of \takeapart according to the number

of times \takeapart is invoked:

\def\makedef#1{\ifcase\namenum
\or\gdef\one{#1}
\or\gdef\two{#1}
\or\gdef\three{#1}
\or\gdef\four{#1}
\or\gdef\five{#1}
\fi}

In order to make an \ifx comparison, we set

\def\aster{*}

\takeapart loops until it sees the *, which will

be supplied in the \throwawayjr macro:

\def\takeapart#1 {%
\global\advance\namenum by1
\def\onex{#1}
\makedef{#1}
\ifx\onex\aster
\makerightdef\let\go\relax

\else
\let\go\takeapart

\fi\go}

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990

We want to alphabetize according to the last

name, and not mistakenly use `Jr.' as the last name.

The �rst argument ends when \throwawayjr sees a

comma, which would normally occur before a Jr. or

Sr. following a name. The second argument is never

used, which is how Jr., or Sr., or III, are thrown

away:

\def\throwawayjr#1, #2{%
\gdef\fullname{#1 * }}

\throwawayjr is used inside a box that is

never used, so we can supply the comma that ends

argument #1, in case there is no comma in the name

given. If a name is used that contains a comma,

that comma delimits the �rst argument. Since the

extra comma is in a box that is never invoked, the

extra comma is never printed.

Here is code to open an auxiliary �le whose

name is the same as the �le containing \alphalist,

but with an .alf extension:

\newwrite\alphafile
\immediate\openout\alphafile=\jobname.alf

Now we have �nished describing the commands

needed to de�ne the names and address and to send

their macro names to the auxiliary �le, and it is

time to input the sorted list.

\endalphalist turns o� the \everypar that

was established with \alphalist and inputs the

.srt �le if it exists. Since all the de�nitions precede

\endalphalist, when the .srt �le is brought in

with the csname control sequences in it, each control

sequence will produce its de�ned name and address:

\def\endalphalist{\egroup
\global\everypar={}
\openin1 \jobname.srt
\ifeof1 %
\message{<<Please sort \jobname.alf
to produce \jobname.srt >>}

\else
\immediate\closein1
\input \jobname.srt

\fi}

Example:

\alphalist
George Smith
21 Maple Street
Ogden, Utah 68709

Jacqueline Onassis
Upper East Side
NYC, NY

Mr. W. T. C. Schoenberg, Jr.
Travesty Lane
Culver City, Iowa

\endalphalist

66 Insights into Macro Writing Techniques Bijlage P

This writes the following lines in the �le test.srt

after test.alf is sorted:

\csname OnassisJacqueline\endcsname
\csname SchoenbergMr.W.T.C.\endcsname
\csname SmithGeorge\endcsname

which will transpose the original list to print the

names and addresses in alphabetic order.

The complete address list code.

\newcount\namenum
\newdimen\heightofentry \heightofentry=.75in
\newdimen\widthofentry \widthofentry=.3\hsize
\def\alphalist{\bgroup\obeylines
\global\everypar={\look}}

{\obeylines
\gdef\look#1^^M#2^^M^^M{\def\test{#1}
\setbox0=\hbox{%
\expandafter\throwawayjr\test, {}}
\global\namenum=0
\expandafter\takeapart\fullname
\obeylines \everypar={} \expandafter%
\gdef\csname\nameinrev\endcsname{%
\vtop to\heightofentry{\parindent=0pt
\vfill\hsize=\widthofentry
#1
#2
\vfill}}%

\immediate\write\alphafile%
{\noexpand\csname\nameinrev%
\noexpand\endcsname}%

\global\everypar={\look}}}
\def\makerightdef{\ifcase\namenum\or
\or\gdef\nameinrev{\one}
\or\gdef\nameinrev{\two\one}
\or\gdef\nameinrev{\three\one\two}
\or\gdef\nameinrev{\four\one\two\three}
\or\gdef\nameinrev{\five\one\two\three%
\four}\fi}

\def\makedef#1{\ifcase\namenum
\or\gdef\one{#1}
\or\gdef\two{#1}
\or\gdef\three{#1}
\or\gdef\four{#1}
\or\gdef\five{#1}\fi}

\def\aster{*}
\def\takeapart#1 {%
\global\advance\namenum by1
\def\onex{#1} \makedef{#1}
\ifx\onex\aster \makerightdef\let\go\relax
\else \let\go\takeapart
\fi\go}

\def\throwawayjr#1, #2{%
\gdef\fullname{#1 * }}

\newwrite\alphafile
\immediate\openout\alphafile=\jobname.alf
\def\endalphalist{\egroup
\global\everypar={}
\openin1 \jobname.srt
\ifeof1 \message{<<Please sort \jobname.alf

to produce \jobname.srt >>}
\else
\immediate\closein1
\input \jobname.srt\fi}

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

