
A package for Church-Slavonic typesetting

Andrey Slepuhin

pooh@shade.msu.ru

1 Introduction

The multilingual ability of TEX is one of its most important properties. Due to TEX it

became possible to produce high-quality books in many di�erent languages (sometimes

with very exotic grammatic rules). For more than 10 years of its existence TEX became

a real polyglot and it seems that it doesn't want to stop evaluating. In this paper one

more, may be rather exotic, example of practical usage of TEX is considered, and also

many ideas and solutions which result from 5-year experience of TEX using.

2 General solutions

How does a language-speci�c package have to look like from the point of view of a

computer publishing system? It must include at least the following components:

� quality fonts;

� tools for simplifying the text formatting;

� hyphenation table;

� punctuation or some other poligraphic rule description;

These requirements became a basis to �«¢~TEX development. The two �rst items got

quite satisfactory realization. As to the realization of the third one { it depends on the

volume of the dictionary, which is not su�ciently complete yet. The fourth item is absent

because the Church-Slavonic language has no precise rules of punctuation or whatever

similar things.

3 Fonts

Designing the quality-fonts is, in general, a very hard task and moreover the author's

knowledge on this subject at the beginning of this work were minimal. So, the designing

331

332 Andrey Slepuhin

of the base version of fonts took more than half a year, and di�erent improvements are

still under development. Among the factors that made the work more complicated, a

large number of symbols (only letters { 44) in the Church-Slavonic alphabet should be

noted. Also the glyphs of symbols have a very few similar elements. The typeface, which

had a wide spreading at the beginning of the XX century, was taken as a model of created

fonts. The following technology was applied for the fonts developing: the symbols were

magni�ed and separate elements were extracted, then base and control points of outline

curves were placed manually and the METAFONT macros were designed; the obtained

symbols were �nally improved using the METAFONT graphic output.

4 The diacritical signs problem

The main problem, that occurred during the �«¢~TEX development, was connected with

the fact, that every word in a Church-Slavonic texts has at least one diacritical sign.

None of computer publishing systems (except TEX, of course), known to the author,

contains any convenient tools for typesetting a text with accents. TEX uses \accent

macro for this purpose, but this macro seems to be designed for rather rare usage,

because it gives the following undesirable e�ects:

� the kern between accented and previous symbols disappear;

� TEX doesn't make any hyphens in the remainder of the word after accented symbol

and can make invalid hyphens in the initial part of the word;

These e�ects are arising because TEX uses explicit kern while expanding \accent

macro. So, it seems, that the best solution of the diacritical signs problem (realized

for many European languages, for example) is a method, when a letter together with

an accent is represented by a single character in the font. However, in the case of the

Church-Slavonic language this solution cannot be applied in proper form, because there

are too many possible pairs `letter { accent', and a limit of 256 symbols will be exhausted.

It would be wonderful if the following idea works: several pairs `letter { accent' have

positions equal modulo 256, and their metrics are identical. Unfortunately, it's impossible

to force TEX to put a symbol with character code greater than 256 into DVI-�le. Such

restriction is especially misunderstanding, because the DVI-�le format supports the usage

of symbols with character codes up to 232 � 1. One more well-known method to deal

with the accents is their realization as strongly shifted left characters of zero width.

Such a variant is unsatisfactory too, because it does not solve the kerning problem and

signi�cantly complicate the hyphenation table constructing.

To solve the accent problem we need to understand how the diacritical signs in

Church-Slavonic language are placed. It can be found, that some of them can be placed

only over the �rst letter in the word, and some can be placed only over the last letter.

These two cases are realized by special macros \fcaccent and \lcaccent. The last

macro can be written in a very simple way, because it needs only to locate the accent

A package for Church-Slavonic typesetting 333

with the help of kerns. The macro \fcaccent has \nobreak\hskip0pt construction in

addition, which enables the hyphenation of the word after the diacritical sign.

As for the accents in the middle of a word, some of them are realized together

with the corresponding letters, and other are representing symbols, used, in general,

for abbreviation of certain words (in Church-Slavonic language they are called `titlo').

The words, containing these symbols, as a rule, cannot be hyphenated, so it became

possible to write a special macro, placing an accent and preserving kern both before and

after the symbol. It is a quite sophisticated macro, which use such powerful TEX tool as

\futurelet. The text of this macro is given below:

\def\caccent#1#2{%

#2\setbox2=\hbox{#2}\setbox1=\hbox{#1}%

\dimen0=\ht2\advance\dimen0 by -1ex%

\dimen1=\wd1\advance\dimen1 by \wd2%

\divide\dimen1 by 2%

\kern-\dimen1\raise\dimen0\hbox{#1}%

\advance\dimen1 by -\wd1%

\kern\dimen1%

\def\tmp{\explkern{#2}\next@}%

\futurelet\next@\tmp%

}%

The \explkern macro simply adds the kern, that must be placed between its arguments:

\def\explkern#1#2{%

\def\next@@{}%

\ifcat#2a%

\explkern@#1#2\else%

\ifcat#2.%

\explkern@#1#2\else%

\ifx#2\-%

\explkern@#1#2\else%

\fi\fi\fi%

}%

\def\explkern@#1#2{%

\setbox0=\hbox{#1#2}%

\setbox1=\hbox{{#1}{#2}}%

\dimen1=\wd0\advance\dimen1by-\wd1%

\kern\dimen1%

}%

For the convenience of the text typesetting, the symbols ', ", `, ~, _, | and < are made

active and are expanded to the corresponding macros. The selection of Church-Slavonic

334 Andrey Slepuhin

mode is realized by the \beginslav macro, and return to usual mode is realized by the

\endslav macro.

5 Slide making

Another problem, that come into consideration during package development is the

problem of slide making. Almost all Church-Slavonic texts are two-colored. For the im-

plementation of the color separation and for obtaining separate slides for each color, the

SliTEX's idea of using `invisible' fonts was applied. However, kerning problems make im-

possible the usage of pure SliTEX. Indeed, having a word with a �rst letter emphasized by

another color (in Church-Slavonic texts it occurs very often), SliTEX looses the required

kern between the �rst letter and the remainder of the word when switching to another

font. So, for such cases we need special macros. To implement the color separation a spe-

cial font selection scheme was designed, slightly similar to NFSS. After including the font

description �le and appropriate macros, user can declare usage of any color via the macro

\newcolor(<color>). This macro induces the macros \<color>g{<any text>} and

\<color>. The �rst of them switches the color, preserving kern, and the second switches

it without preserving any implicit kern (TEX interprets this macro in the simplest way, so

its usage is approved). Now, typing \showcolor(<color>) or \hidecolor(<color>)

in the input �le, we can make any selection by a speci�ed color visible or invisible in

output. The text before the �rst usage of \<color>g{<any text>} or \<color> will

be always visible.

6 Numeration

In Church-Slavonic language a literal numeration is accepted, which can be described by

the following algorithm:

Given an integer n � 0. Let S(n) be its representation in Church-Slavonic language.

See also Table 1.

The representation of zero is absent in Church-Slavonic language, but let it be empty

for conveniency.

If 10 � n < 20, then S(n) = S(n mod 10)S(10). If 20 � n < 100, then S(n) =

S(n � (n mod 10))S(n mod 10). If 100 � n < 1000, then S(n) = S(n � (n mod

100))S(n mod 100). If 1000 � n < 10000, then S(n) =�S(n � (n mod 1000)S(n mod

1000).

There are disagreements about representation of numbers greater than 9999, and

by this reason it is not implemented yet. The macro \slnum(<number>) automatically

generates the number representation in the Church-Slavonic language. For example,

\slnum(1995) gives � æ~ç¥. One would be careful, because this macro is valid only in

Church-Slavonic mode.

A package for Church-Slavonic typesetting 335

n S(n) n S(n) n S(n)

1 ~ 10 ~� 100 ~à
2 ~¢ 20 ~ª 200 ~á
3 ~£ 30 ~« 300 ~â
4 ~¤ 40 ~¬ 400 ~�
5 ~¥ 50 ~­ 500 ~ä
6 ~s 60 ~x 600 ~å
7 ~§ 70 ~o 700 ~z
8 ~̈ 80 ~̄ 800 ~w
9 ~f 90 ~ç 900 ~æ

Table 1: Numeration in Church-Slavonic language

7 TEX without encoding

During the work on �«¢~TEX an idea appeared which allows to solve the compatibility

problem while transferring any package to another platform. This problem is especially

actual in Russia, because Russian letter encodings on di�erent platforms do not coincide.

A version of TEX cyrillisation made by CyrTUG is speci�c for PC-compatible computers

under MS DOS. It causes, in particular, the disgust of numerous UNIX users in big

research institutes, which need TEX most of all.

The idea of easy transferring any TEX package to di�erent platforms is given below:

� The encoding table containing a map between character codes and their sym-

bolic names (for example, like PostScript names) must be de�ned for each speci�c

platform and font family.

� The certain utility must be written (it can be done even by TEX!) which generates

two �les: TEX encoding table and METAFONT encoding table, from the original one.

� The set of METAFONT macros must be added to rede�ne beginchar macro; it

must allow the usage of symbolic names instead of character codes by declaring

usenames:=1 or whatever like this.

� Hyphenation table must be written, using the symbolic names; when generating base

�le, �rstly TEX should read encoding, then it should convert original hyphenation

table into temporary �le using current encoding and then it should read the �le

obtained.

� \catcode, \lccode and \uccode should be de�ned using symbolic names.

This idea is implemented in the last version of the package represented and is now

in the process of testing. It should be hoped that new CyrTUG's cyrillisation versions

will be written in the form described above. It would facilitate the work for many TEX

users in Russia and for people who need to typeset Russian (or other Cyrillic) texts.

336 Andrey Slepuhin

8 Type 1 from Metafont?

The one more idea, implemented as a part of �«¢~TEX project, came from the article[3].

Its realization was forced by appearing a PostScript-printer on the author's table. There

was written a set of METAFONT macros which allow to obtain a text representation

of Type 1 fonts from METAFONT sources and, furthermore, a downloadable font by

L. Hetherington's Type 1 utilities. This macro package initially was designed to solve the

speci�c problem of representation Church-Slavonic in Type 1 format, but the conversion

of Computer Modern fonts (and others) is also possible. This work requires a special

consideration and is not described in the paper.

9 Problems and plans

The most important of the update problems is the adaptation of �«¢~TEX package to

LATEX2". When this paper was being written, the author had the distribution of LATEX2"
for a month, and this distribution was not installed due to the lack of the time. Another

problem is connected with the fact that the current font version contains only symbols of

modern Church-Slavonic language, whereas symbols from ancient versions of language

are often needed. The author also plans to develop a package for typesetting music in

non-linear notation (so-called `krjuki') being in use before XVIIIth century. The following

problems connected to Church-Slavonic typesetting also would be noted: designing a

font of initial caps and a special font for headings. In this font di�erent combinations of

letters must have speci�c glyphs (this task seems to be a little fantastic, because such

font should have a monstrous number of symbols and ligatures).

It would be hoped that somebody shares the author's interest in the problem of

Church-Slavonic and ancient texts. May be sometime a multilingual edition of Bible

(in Church-Slavonic, Greek, Latin, Hebrew . . . what else?) made by TEX come in

appearance.

10 Examples

A simple example of a Church-Slavonic text:

£|á¤¨ <i_¨á¥ å|áàâ`¥, á_­¥ ¡_¦i©,

¯®¬'¨«ã© ¬`ï £à'íè­ £®

and the result of its compilation:

A package for Church-Slavonic typesetting 337

£¤�¨ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
An example of color separation: a sequence of macros

\beginslav\family(slav)\size(12)%

\def\pray{%

\redg �|á{¤¨} <i_¨á¥ å|áàâ`¥, á_­¥

¡_¦i©, ¯®¬'¨«ã© ¬`ï £à'íè­ £®

}%

\black%

\showcolor(red)%

\par\noindent\pray

\hidecolor(red)%

\showcolor(black)%

\par\noindent\pray

\showcolor(red)%

\par\noindent\pray

\endslav

gives the result

�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

This example shows that accents can be placed over a group of symbols, not only over

a single symbol.

References

[1] Donald E. Knuth. The TEXbook. Addison Wesley, Reading, MA, 1990.

[2] Donald E. Knuth. The METAFONTbook. Addison Wesley, Reading, MA, 1990.

[3] Bogus law Jackowski, Marek Ry�cko. Labyrinth of METAFONT paths in outline.

EuroTEX Proceedings, 1994: 18{32.

[4] Ieromonakh Alipiy (Gamanovich). Grammatika tserkovno-slavjanskogo jazyka.

Palomnik, Moscow, 1991.

[5] Slovar' russkogo jazyka XI{XVII vv. Nauka, Moscow, 1975.

